Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

16 β -Bromo-17 α -hydroxypregn-4-ene-3,20-dione methanol solvate

Shi Wang,* Yongli Wang, Qiang Nie, Aishuang Xiang and Lina Zhou

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wangshi04@hotmail.com

Key indicators

Single-crystal X-ray study $T=293~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.012~\mathrm{\mathring{A}}$ R factor = 0.066 wR factor = 0.192 Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_{21}H_{29}BrO_3 \cdot CH_3OH$, is a steroid and an intermediate for medicinal applications. It is prepared through the reaction of 16,17-epoxypregn-4-ene-3,20-dione and HBr, and the methanol solvate is reported here. The space group is $P2_12_12_1$ and is different from the space group of 16β -bromo-17 α -hydroxypregn-4-ene-3,20-dione which is C2 [Wang, Wang, Nie, Xiang & Zhou (2005). *Acta Cryst.* E**61**, o1–o2].

Received 18 November 2004 Accepted 25 January 2005 Online 5 February 2005

Comment

The title compound, (I), is a steroid derivative with medicinal applications, obtained from the reaction of 16,17-epoxypregn-4-ene-3,20-dione and HBr in acetic acid. It was purified by recrystallization. In the present paper, we report the crystal structure of the title compound, (I).

Ring A of (I) is in the 1α -sofa conformation, whereas rings B and C are in chair conformations and ring D is in a 14α -envelope conformation. The conformations are similar to those in 17α -hydroxyprogesterone (Declercq et al., 1972; refcode HPRGDO in the Cambridge Structural Database,-Version 5.25; Allen, 2002), and 16α ,17-epoxy-4-pregnene-3,20-dione (refcode DILYEC; Goubitz et al., 1984).

The title compound crystallizes with methanol in the space group $P2_12_12_1$. The unit-cell parameters are different in this respect from 16α ,17-epoxy-4-pregnene-3,20-dione, which also crystallizes in $P2_12_12_1$. We found that the title compound could

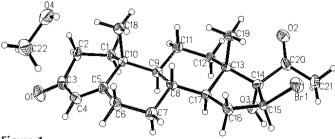


Figure 1

ORTEPII view (Johnson, 1976) of the title compound, shown with 30% probability displacement ellipsoids.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

also crystallize in the monoclinic space group C2 from an acetone solution.

There is a hydrogen bond between O4 (methanol) and O1 (Table 1). The methanol molecule acts as a bridge linking two steroid molecules and makes a further hydrogen bond with O3 in another molecule.

Experimental

 16β -Bromo- 17α -hydroxypregn-4-ene-3,20-dione was prepared by the reaction of 16,17-epoxypregn-4-ene-3,20-dione and HBr in acetic acid, and purified by recrystallization. The melting point of 470.65 K was obtained by differential scanning calorimetry, which also showed a peak at 350.0 K due to loss of solvent. Colorless crystals suitable for X-ray diffraction were obtained by slow evaporation of the methanol solution in air.

Crystal data

$C_{21}H_{29}BrO_3 \cdot CH_4O$	Mo $K\alpha$ radiation Cell parameters from 3797		
$M_r = 441.39$			
Orthorhombic, $P2_12_12_1$	reflections		
a = 12.008 (3) Å	$\theta = 2.3-25.7^{\circ}$		
b = 25.192 (6) Å	$\mu = 1.96 \text{ mm}^{-1}$		
c = 7.0192 (12) Å	T = 293 (2) K		
$V = 2123.4 (8) \text{ Å}^3$	Block, colorless		
Z=4	$0.40 \times 0.38 \times 0.30 \text{ mm}$		
$D_x = 1.381 \text{ Mg m}^{-3}$			

Data collection

D. I. CMART CCD. 14.4	2705: 1 1 4 9 4:
Bruker SMART CCD area-detector	3705 independent reflections
diffractometer	2879 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.064$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Bruker, 1998)	$h = -6 \rightarrow 14$
$T_{\min} = 0.421, T_{\max} = 0.555$	$k = -29 \rightarrow 29$
10 348 measured reflections	$l = -8 \rightarrow 8$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0659P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.066$	
	+ 10.8219 <i>P</i>]
$wR(F^2) = 0.192$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
3705 reflections	$\Delta \rho_{\text{max}} = 1.02 \text{ e Å}^{-3}$
247 parameters	$\Delta \rho_{\min} = -0.57 \text{ e Å}^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983),
	1151 Friedel pairs
	Flack parameter = $0.08(2)$

Table 1 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	<i>D</i> —Н	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
$O4-H4A\cdots O1^{i}$	0.82	2.02	2.757 (11)	150
$O3-H3\cdots O4^{ii}$	0.85	1.98	2.832 (9)	180

Symmetry codes: (i) x, y, z - 1; (ii) x - 1, y, z.

H atoms were positioned geometrically (O-H = 0.85 and C-H = 0.93–0.98 Å) and refined as riding on the parent atom, with $U_{\rm iso}({\rm H})$ = 1.2 or 1.5 times $U_{\rm eq}({\rm parent\ atom})$.

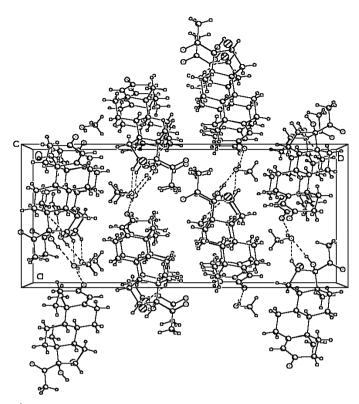


Figure 2 The molecular packing of the title compound, viewed along the c axis. Dashed lines indicate the intermolecular hydrogen-bonding interactions

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998) data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge support from the SRCICT of Tianjin University.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bruker (1998). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Declercq, J. P., Germain, G. & van Meerssche, M. (1972). Cryst. Struct. Commun. 1, 9-11.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Goubitz, K., Schenk, H. & Zeelen, F. J. (1984). Steroids, 44, 153-158.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wang, S., Wang, Y., Nie, Q., Xiang, A. & Zhou, L. (2005). *Acta Cryst.* E**61**, o1–o2